资料分析
比重专题
两期比重

两期比重

核心概念

什么是两期比重?

想象一下你班级的情况:去年你们班有40个人,其中男生20人;今年班级扩大到50人,男生增加到24人。那么:

  • 去年男生比重 = 20/40 = 50%
  • 今年男生比重 = 24/50 = 48%

两期比重就是分析同一指标在不同时期的占比变化情况

基本概念推导

让我们用一个例子来推导核心公式:

例子背景:小明家开了一家奶茶店

  • 去年:奶茶销量100杯,总饮品销量500杯,奶茶占比 = 100/500 = 20%
  • 今年:奶茶销量增长30%,总饮品增长20%

第一步:建立变量关系

设:

  • A0A_0:基期部分量(去年奶茶销量100杯)
  • B0B_0:基期总体量(去年总饮品500杯)
  • A1A_1:现期部分量(今年奶茶销量)
  • B1B_1:现期总体量(今年总饮品销量)
  • aa:部分量增长率(奶茶增长率30%)
  • bb:总体量增长率(总饮品增长率20%)

第二步:现期与基期的关系

A1=A0×(1+a)=100×(1+30%)=130A_1 = A_0 \times (1 + a) = 100 \times (1 + 30\%) = 130

B1=B0×(1+b)=500×(1+20%)=600B_1 = B_0 \times (1 + b) = 500 \times (1 + 20\%) = 600

第三步:比重公式推导

现期比重:A1B1=130600=21.67%\frac{A_1}{B_1} = \frac{130}{600} = 21.67\%

基期比重:A0B0=100500=20%\frac{A_0}{B_0} = \frac{100}{500} = 20\%

核心公式基期比重=A0B0=A1/(1+a)B1/(1+b)=A1B1×1+b1+a\text{基期比重} = \frac{A_0}{B_0} = \frac{A_1/(1+a)}{B_1/(1+b)} = \frac{A_1}{B_1} \times \frac{1+b}{1+a}

两期比重变化量推导

继续用奶茶店的例子:

  • 今年奶茶占比:21.67%
  • 去年奶茶占比:20%
  • 变化量:21.67% - 20% = 1.67个百分点

数学推导过程:

Δ=A1B1A0B0\Delta = \frac{A_1}{B_1} - \frac{A_0}{B_0}

=A1B1A1/(1+a)B1/(1+b)= \frac{A_1}{B_1} - \frac{A_1/(1+a)}{B_1/(1+b)}

=A1B1A1B1×1+b1+a= \frac{A_1}{B_1} - \frac{A_1}{B_1} \times \frac{1+b}{1+a}

=A1B1(11+b1+a)= \frac{A_1}{B_1} \left(1 - \frac{1+b}{1+a}\right)

=A1B1×(1+a)(1+b)1+a= \frac{A_1}{B_1} \times \frac{(1+a)-(1+b)}{1+a}

=A1B1×ab1+a= \frac{A_1}{B_1} \times \frac{a-b}{1+a}

两期比重变化量公式Δ=A1B1×ab1+a\Delta = \frac{A_1}{B_1} \times \frac{a-b}{1+a}

变化方向判断

关键判断法则

  • a>ba > b 时,比重上升
  • a<ba < b 时,比重下降
  • a=ba = b 时,比重不变

为什么这样判断? 从变化量公式 Δ=A1B1×ab1+a\Delta = \frac{A_1}{B_1} \times \frac{a-b}{1+a} 可以看出:

  • A1B1>0\frac{A_1}{B_1} > 0(比重恒为正)
  • 1+a>01+a > 0(增长率通常大于-100%)
  • 所以 Δ\Delta 的正负完全取决于 (ab)(a-b) 的正负

真题讲解

主题一:基本两期比重计算

例1(2025国考模拟): 2023年某市新能源汽车销量为8万辆,同比增长25%;汽车总销量为40万辆,同比增长15%。问2022年新能源汽车销量占该市汽车总销量的比重是多少?

A. 18.6%
B. 17.4%

C. 16.8%
D. 15.2%

主题二:两期比重变化量计算

例2(2024省考模拟): 2023年某省文化产业增加值为1200亿元,比上年增长12%;该省GDP为15000亿元,比上年增长8%。问2023年文化产业增加值占GDP的比重比上年上升了多少个百分点?

A. 0.25个百分点
B. 0.31个百分点
C. 0.28个百分点
D. 0.35个百分点

主题三:比重变化方向判断

例3(2023国考模拟): 2022年某地区第三产业增加值同比增长6.2%,全地区生产总值同比增长7.8%。下列关于2022年第三产业增加值占全地区生产总值比重变化的判断,正确的是:

A. 比重上升
B. 比重下降
C. 比重不变
D. 无法判断

主题四:复合计算与估算技巧

例4(2024国考模拟): 2023年某市高新技术企业营收为2400亿元,增长18%;全市规模以上工业企业营收为8000亿元,增长10%。问2023年高新技术企业营收占规模以上工业企业营收的比重比2022年变化了多少?

A. 上升了2.1个百分点
B. 上升了2.5个百分点
C. 下降了1.8个百分点
D. 上升了1.9个百分点

主题五:间隔期两期比重

例5(2025省考模拟): 已知2021年某省农产品出口额为300亿美元,2023年为432亿美元;2021年该省商品出口总额为1500亿美元,2023年为1980亿美元。问2023年农产品出口额占商品出口总额的比重与2021年相比如何变化?

A. 上升了0.8个百分点
B. 下降了1.2个百分点
C. 上升了1.5个百分点
D. 基本不变

技巧总结

1. 快速判断技巧

核心记忆口诀

  • 部分快,总体慢,比重必然要上窜
  • 部分慢,总体快,比重必定要下滑
  • 增长率,一样快,比重数值不改变

2. 计算简化技巧

技巧一:估算法 当增长率较小(<20%)时: ΔA1B1×(ab)\Delta \approx \frac{A_1}{B_1} \times (a-b)

技巧二:特殊值法

  • ab=10%a-b = 10\% 且现期比重为25%时,变化量约为2.3个百分点
  • ab=5%a-b = 5\% 且现期比重为20%时,变化量约为1个百分点

技巧三:常见陷阱避免

  1. 注意题目问的是"基期比重"还是"现期比重"
  2. 变化量的单位是"百分点"而非"百分比"
  3. 增长率的正负号要注意(负增长意味着下降)

3. 解题步骤标准化

标准四步法:

  1. 信息提取:找出 A1,B1,a,bA_1, B_1, a, b
  2. 方向判断:比较 aabb 的大小关系
  3. 公式选择:根据题目要求选择相应公式
  4. 数值计算:代入数据,注意运算精度

4. 高频考点总结

  1. 基期比重计算:占比约30%
  2. 两期比重变化量:占比约40%
  3. 变化方向判断:占比约20%
  4. 复合问题:占比约10%

备考建议

  • 熟练掌握基础公式推导过程
  • 多练习快速判断变化方向
  • 培养估算能力,提高解题速度
  • 注意陷阱设置,仔细审题
上岸学堂小程序二维码

🎯 扫码练一练

AI刷题,天下无敌;上岸在手,编制我有!

上岸小助手二维码

🤖 上岸小助手

• 24小时在线答疑
• 个性化学习指导
• 最新考试资讯